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A New Statistical Approach for
Cyclic Life Tracking of Engine Critical Parts

By

Robert L. Kiang
Naval Air Warfare Center Aircraft Division
Patuxent River, MD 20670

Abstract

This paper describes a flight data based statistical method that allows missing low cycle
fatigue data in engine critical parts to be filled in with appropriate values that are not overly
conservative but still ensure flight safety. The derived criterion resembles the Student’s t-
function in that it provides an estimate of the population mean given the sample mean. It
differs from the Student’s t-function in the following manner. This “t-function” is dependent
upon two independent parameters, the number of samples and the percent of data captured,
whereas the Student’s t-function depends only on the number of samples. When the capture
rate is relatively low, this methodology can save many critical parts from early mandatory

retirement.
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A critical part of a gas turbine engine is defined as a component whose failure will cause
an engine catastrophe with potential loss of the aircraft. Typical examples are fan hubs and
turbine disks. Each critical part is assigned a maximum number of engine cycles, based upon
design analysis and component testing, below which the part is guaranteed not to fail in low
cycle fatigue (LCF). When a new engine goes into operation, the usage of each critical part is
meticulously recorded. For flight safety, mandatory replacement is required when a critical
part reaches its limit cycle.

Despite the wide spread use of automatic data recorders (ADR) in both commercial and
military aircraft, 100% capture of the cycle counts are difficult to achieve. The missing hours
are, essentially, the difference between the pilot reported flight hours and the data recorder
hours. How to account for the corresponding missing cycles is the subject of this paper.
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Using embedded algorithm and measured engine operating parameters (pressure,
temperature, rpm, etc.), the data recorder calculates the cyclic usage of each of the critical
part in real time. When the data are downloaded at a maintenance depot, an exchange rate,
defined as the number of cycles used per engine operating hour, is then saved as permanent
records. Variability in the exchange rate is relatively small in a commercial engine, but can
be quite large in a military engine because of the necessary power variations in a particular
mission. Accounting for the missing cycles amounts to assigning an appropriate exchange
rate for the missing hours. ‘

The task becomes a statistical exercise because one is interested in knowing the true mean
value of the exchange rate had all the data been captured. The situation is akin to the
Student’s t-function from which one can ascertain the value of the population mean from the
known sample mean and standard deviation. The t-function cannot be directly applied to the
missing exchange rate problem, however, for two reasons. One is that the “population”

_referred to in the +function is a sample of infinite size. The total number of recorded and
missing exchange rates of a particular engine build in its operating life is far from infinite.
Thus using the Student’s t would give overly conservative results. The second reason, a more
troublesome one, is that the Student’s t-function has only one independent parameter, namely,
the number of samples, n. In the missing exchange rate problem, there are two independent
parameters: the number of known exchange rates in an engine build, n, and the capture rate,
n/N, where N is the total exchange rate “population” had there been no missing data. The
exercise, detailed in this paper, involves the generation of an equivalent t-function with two
independent parameters using the available data from the data recorder. Use of this method
can prevent premature retirement of expensive engine components while maintaining safe

operation.

Current Fill-in Methodology

For the sake of flight safety, the missing exchange rate, or LCF stress cycles per flight
hour, must be filled in with some values. Different engine manufacturers, for that matter,
different engines may use slightly different fill-in methods. Some adopt the philosophy that
any missing data are filled in with a worst case value, that is, the highest exchange rate ever
recorded for that component. Others use a more statistically realistic approach by assigning a
cut-off capture rate. The worst case value would still be used if the capture rate, over a
certain period, is below this cut-off value. If the capture rate is above this value, then the
average of all the captured exchange rates over this period is used as the fill-in value. The



basis for this approach is of course the law of the average, namely, the average exchange rate
value of the missing data, if they constitute a small fraction of the total data, is expected to be
equal to the average of the captured data. The application of the capture rate cut-off method
is illustrated below.

Figure 1 is a plot of the exchange rate data from a high pressure turbine disk of a specific
turbofan engine versus time segregated by engine builds. Each point on the graph is an
exchange rate calculated from the ADR downloaded raw data, namely, cycles used and
accumulated flight hours over several flights. As noted on the top margin of this graph, this
engine has gone through two builds in the 3-1/2 year period shown. Build 1 has also been
installed in two different aircraft resulting in three data sets. In data set 1, there are 18 data
points. But it is known from other flight records that 13 data points are missing, due to either
ADR malfunction or other type of errors. This translates to a data capture rate of 58%. In set
2, no data was captured. In set 3, the capture rate was 62%. If one adopts a cut-off capture
rate of 60%, then the 13 missing data points in set 1 are each assigned a fill-in exchange rate
of 4.55 cycles per hour, a worst case value derived by some other statistical means. For data
set 2, all data are filled in with a worst case value of 6.04. For data set 3, since the capture
rate is above the cut-off, all missing data are filled in with an exchange rate of 3.95 cycles per
hour which is the average of the captured data.

Filling in with the worst case values is probably over conservative (The cut-off method
mitigates some of the conservatism by filling in with data average when the capture rate is
high). To erron the conservative side is certainly commendable from the flight safety
standpoint, but that means the parts will be retired prematurely resulting in increased
maintenance cost of the engine. The methodology described below, modeled after the
Student’s t-law, provides a statistically based means to fill in the missing data without
jeopardizing flight safety.

Student’s t-law

Even though the explanation of the Student’s t-law can be found in almost any statistical
book, we summarize the essence of this law here for two reasons. One is that the statistical
exercise to be presented in the following sections can be viewed as an extension of the
Student’s t-law. The second reason is that the t-law serves to introduce some of the
terminology that will be used later.

For this application, in which the concern is how much the sample mean under-predicts
the population mean, the Student's t-law can be written in the following form:

(1= X) /5> tg, 0/ ()" (1)

where  p = population mean
X =sample mean
s = sample standard deviation
n = number of samples
to a1 = t-function that depends on a and n-1, the degree of freedom
o = probability in which the above inequality holds

With the tabulated t-function readily found in many of the statistical textbooks, the above
formula allows one to calculate the difference between the population mean (which is



unknown) and the sample mean as measured by units of standard deviation. A graphic
representation of the Student's t-function is shown in Figure 2. If one chooses a to be 5%,
the above formula says that there is a 5% probability that p will exceed X by the amount
dictated by the right hand side of Eq (1). This is equivalent to saying that one is 95%
confident that p will not exceed X by that amount. If one considers t as a function of
confidence level (CL) instead of probability, then the Student's t-law can be recast into a form
better suited for this discussion:

(k- X)/s<tcy ai/ ()" )

Common sense tells us that when the number of samples is small, say 5 or 10, the sample
mean, X, can be quite different from the true mean, i.e., the population mean, p. As the
number of samples increases, X would approach p. This expectation is reflected in each of
the curves in Figure 2, that is, the t value is large for small n, and reduces to a smaller, and
eventually a near constant, for larger n. ‘As an example, when n = 11 (or the degree of
freedom equals 10), one has 95% confidence that p - X is less than 0.54s (i.e., about half of
the sample’s standard deviation). If n = 101, the corresponding p - X is less than 0.16s.

The assumptions underlying the t-law are (1) the samples follow a normal, i.e., Gaussian,
distribution, and (2) the population is large (mathematically infinite). To test the normality of
the data, exchange rates from several high pressure turbine disks have been plotted on
Gaussian charts. One example of the charts is shown in Figure 3 (A perfect Gaussian
distribution would show up as a straight line on this chart). The goodness of fit parameter
n”2 of 0.933 indicates that the Gaussian assumption is acceptable. It has also been postulated
that the exchange rate assumes a Weibull distribution. A Weibull chart is also included in
Figure 3 as a comparison to the Gaussian chart. For the example shown, the data show that
they are closer to a Weibull than a Gaussian distribution.

Example of Student’s t Application

Over a period of 12 months, a specific engine was of one build and associated with one
aircraft installation.. There were 106 ADRS downloads during this period, each resulting in
one exchange rate for each of the critical parts. For the HP turbine in this engine, the
minimum exchange rate is 1.095 cycles/hour, the maximum 17.925, but the majority cluster
around 5 and 6. We consider this set of exchange rates a data set with n = 106. It was also
determined that the data capture rate during this period was 70%. This means that if the
capture rate were 100%, there ought to be 151 data points, i.e., N =151. According to the
Student's t-law with 95% confidence,

(r- X)/s |06 <tcL.nr / (n)"” = 1.645/(106)" = 0.16

If, for some reason, one only had 50 ER values instead of 106, then the sample mean is
expected to differ more from the population mean by:

(n- X)/slso<tcL .t/ (n)?=1.645/(50)"?=0.23
On the other hand, if one had all 151 values, then

(L= X)/s|si <teL.nt /()2 =1.645/(151)"?=0.13




This example brings out a significant message conveyed by the Student's t-law. That is,
the magnitude of (i - X) is dictated by the number of data points. It is also noted that
capture rate, the other parameter of interest, does not appear in the Student’s t-law. The
absence of capture rate from the Student’s t-law is explained in the next section.

Finite versus Infinite Population Size

As mentioned earlier, the Student’s t-law assumes the size of the population is infinite,
i.e., N — oo, Since the capture rate is n/N, Student’s t-law applies to the special case of
capture rate being zero.

The number of exchange rate values in a particular data set will always be finite. If the
capture rate of a particular data set is 100%, then the mean ER value would accurately reflect
the LCF cycles of that engine during that period of operation. No fill-in ER is required.
When the capture rate is, say, 90%, the corresponding mean ER is expected to be different
from the “population” mean had 100% of the data been captured. The difference between the
“sample” and the “population” mean is expected to grow as the capture rate becomes smaller.
This is analogous to the Student’s t-law except the independent variable is n/N instead of n.
n, however, will remain a controlling parameter by itself for the following reason. For a
specific /N, the sample mean is expected to be closer to the population mean when n is
larger (Intuitively, one would expect the average of two numbers taken from a population of
20 to be further away from the population average than for the case in which 200 numbers are
taken from a population of 2000). What we need, therefore, is an alternative to the t-law that
has two independent variables, n and n/N. Fortunately, the specific engine of interest has
been in use for several years and therc exist a large amount of field exchange rate data. We
shall take advantage of the available data and generate a set of “ t-functions” with two
independent variables.

Methodology

The data available to us are contained in 282 data sets, each corresponding to either an
engine build or an aircraft installation. That means for each of the four critical components of
concern (LP compressor drum, HP compressor drum, HP turbine disk, and LP turbine disk)
there are 282 sets of exchange rate values. Within each data set, there can be as few as two
exchange rate values and as many as 130. The mean number of points in a set is about 40.

In this exercise, we assume the number of points in a data set is the full “population” and
denote that number by N. Random removal of points from this set will generate many
subsets each has n points and a corresponding capture rate (n/N). Note that even though N is
far less than infinite, we still define the full set as the population for ease of identification.
The corresponding average of all N points will still be denoted by p. The average of a subset
is again X. By the process of random removal, a (1 - X)/X versus n plot can be generated for
a given N.

Figure 4 is such a plot for N = 80 (HPT data are used in this illustration). Within the 282
data sets, there are 36 sets that have 80 points or more. For sets that contain more than 80
points, excess points are removed by a random selection process so that each of the 36 sets
starts with exactly 80 points, and a p is calculated from these exchange rate values. Next, a
point is removed, randomly, from each of these 36 sets. A sample mean, X, corresponding to
n =79, is then calculated, from which (i - X)/X can be readily obtained. All 36 of these (. -




X)/X values are plotted along the vertical line of n = 79. The process is repeated by randomly
removing two points from each set resulting in further spreading of points along n=78. As
expected, the spread becomes wider and wider as n, or equivalently n/N, gets smaller.
Assuming the vertical scatter seen along any value of n is Gaussian distributed, one can -
calculate the standard deviation in (i - X)/X. Two curves corresponding to + and - twice that
standard deviation are plotted in this diagram. Since 2-sigma encompasses 95% of the area
under a bell shaped curve, this means 95% of the points should lie between the two curves.

As far as exchange rate is concerned, one is more interested in the upper curve along which p
> X. Since the Gaussian distribution is symmetrical about its mean, the probability that a
point lies above the upper curve is only 2.5%. In other words, the upper curve marks the
boundary at which one has 97.5% confidence that the sample mean X will not be greater than
the population mean p. As a matter of fact, it gives the expected amount in which X will be
below p. For instance, at N = 80 (that is the basis of Figure 4) and n = 40, or equivalently a
capture rate of n/N = 50%, p - X is expected (with 97.5% confidence) to be 0.1X. This

upper curve, without the underlying points, is re-plotted in Figure 5.

Plots similar to Figure 5 have been generated for N = 90, 65, 50, 30, 20 and 10. From
each of these 2-sigma plots, a threshold n, and its corresponding capture rate, for a specific
value of (i - X)/X can be determined. For example, in the case of N = 80 (see Figure 5), the
threshold n and the capture rate are 18 and 0.23 respectively for (i -X)/X = 0.2. Table 1
summarizes these threshold values for all N including this example of N = 80. For N = 50,
three random reduction exercises were performed resulting in three slightly different two-
standard deviation curves, hence three sets of values. These were done to get a measure of
the scatter from different random reduction exercises.

Table 1 ‘
Threshold n and Capture Rate for (1 - X)/X = 0.2 with 97.5% Confidence
N 90 80 65 50 30 20 10
Threshold n 21 .18 16 13,16, 17 13 10 7

Threshold Cap. Rate | 0.23 0.23 0.25 | .26,.32,.34 | 043 | 0.50 | 0.70

Threshold n versus capture rate from Table 1 are plotted as diamonds, along with a linear
regression, in Figure 6. For this linear fit, area to the upper right of the line marks the region
where (i - X)/X < 0.2, whereas that to lower left marks the region where (u - X)/X > 0.2.
Also shown in Figure 6 are points and lines for (n - X)/X =0.05, 0.10, 0.15, and 0.25.

Figure 6 is the desired “t-function” with two independent variables n and n/N.
Application of this function is as follows.

Assemble an exchange rate data set for a specific engine build.

Determine the number of data points captured, n, and the number missing, N-n.
.Calculate the average exchange rate X of the captured data.

Determine, from Figure 6, the value of (1 - X)/X corresponding to the n and n/N
obtained in item 2. Interpolate if necessary.
5. Calculate the value of p and use it to fill in all the missing data.

AW -




The linear regression lines in Figure 6 are made to converge at capture rate equals 1.0 and
n = ( because these values represent the physical limits of these two parameters. The lines’
intercepts with the x-axis, corresponding to a capture rate of zero, are the equivalents of the
Student’s t-law. Indeed, Student’s t predictions of (i - X)/X from the individual 282 data sets
(with a 97.5% confidence) are close to the results of Figure 6 at very small capture rates.
(Note: A direct comparison to the Student’s t prediction a n/N = 0 is not possible because for
capture rates corresponding to n = 0, and for that matter 1, there is no scatter in the data and
thus no standard deviation s. Neither the Student’s t-law nor the “t-function” for two
variables derived above is meaningful.)

Even though we have illustrated our methodology using only the HPT data, similar data
analyses have been done for the HPC, LPT, and LPC data. Provided that sufficient exchange
rate, or equivalently cyclic usage, data exist on any engine, the same methodology can be
used to derive the “t-function” for a specific critical part. -

A Critical Part Usage Example

As an example of how different fill-in methods would affect the cyclic usage of a critical
part, we have chosen a low pressure turbine disk example. This disk has been installed in
five different engine builds over its service life. The data capture rates by the automatic data
recorder range from 0 to 91% as seen in Table 2. So fill in is needed in every one of the five
builds. It has also been determined that the worst case fill-in value should be 11.9
cycles/hour. This value is used to calculate the worst case fill-in cycles based on the missing
flight hours that needed to be filled in. The resulting total usage is then calculated to be
22,876 cycles. If on the other hand, one chooses to use a 60% capture rate as a cutoff above
which mean exchange rate from the captured data is used as fill-ins (For builds with capture
rates below 60%, the worst case fill-in value is still used), then the total usage is slightly less,
at 22,768 cycles. The choice of a cutoff capture rate is rather subjective, but will influence
the total cycle counts. Finally the “t-function” method is used to calculate the usage. As can
be seen in Table 2, the worst case exchange rate is still used for build 3 because it has zero
capture rate. The fill-in exchange rates for all other builds are determine by a n versus
capture rate plot similar to that shown in Figure 6. Not only the subjectivity is removed, but
in this case, the usage is reduced by 10% to 20,579 cycles.

Summary

A statistics based methodology is presented that determines of the proper fill-in exchange
rate values when cyclic usage data are missing from the automatic data recorder. This allows
a more accurate account of the total cyclic usage of a fracture critical part in a gas turbine

engine thus promotes the overall flight safety.



Table 2 Fill-in Comparisons

Build No. 1 2 3 4 5

No. of Dnload, n 13 6 0 99 97
Pilot Hrs 116 81 337 896 828
ADR Hrs 93 74 0 526 446
ADR Cycles 779 { 592 0| 4374 | 3815
Cap. Rate 0801 091 000| 059]| 0.54
Fill-in Hrs 23 7 337 370 382
Av.ER, X 8.4 80| N/A 8.3 8.6

Worst Case Fill-in

Fill-inER | 11.9] 11.9| 11.9] 119] 119

Fill-in Cycles 274 83| 4010 | 4403 | 4546

Total Cycles | 1053 ] 675 4010 | 8777 | 8361 | £=22876

60% CR Cutoff

Fill-in ER 8.4 801 119 119( 119

Fill-in Cycles 193 56 | 4010 | 4403 | 4546

Total Cycles 972 | 648 | 4010 | 8777 | 8361 | £=22768

“t-function” Method

Fill-in ER 9.3 891 119 8.8 9.1

Fill-in Cycles 214 62| 4010 [ 3256 [ 3476

Total Cycles 993 | 6541 4010| 7630 7291 | X =20579
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